
An Introduction to BPMN

By Derek Miers, CEO – BPM Focus.

Abstract: This paper is drawn from Chapter 5 of the BPMN Modeling and Reference Guide,
which provides detailed information on BPMN elements introduced. This document
is designed to provide the reader with a gradual introduction to BPMN, taking an
easily understood scenario and then slowly building upon it, bringing in further
BPMN functionality within that described context.

Designed for those coming to BPMN for the first time, it allows them to familiarize
themselves with the core features of the Notation without being overwhelmed by
the complexity of some of the more esoteric aspects. Most of the functionality
described here is limited to the “core” set of BPMN elements – it is not the intention
of this paper to provide a complete introduction to BPMN.

Building out a Process with BPMN
The central scenario revolves around a fictitious organization Mortgage Co.
They take applications from potential customers, make an assessment
whether or not to offer the mortgage, and then either reject the application or
make the offer (see Figure 1).1

Figure 1—The underlying mortgage offer scenario

Clearly, this is a rather simplistic picture of how such a process might operate. But
it will suffice in providing the backdrop for us to introduce the functionality of
BPMN. Through the remainder of this part of the book, we will systematically build
on that underlying scenario, embellishing the story and bringing in the appropriate
BPMN modeling features to represent the desired behavior.2

The Process begins on the left with a Start Event (thin line circle), with two
Activities (rounded rectangles) connected to the Start Event with Sequence Flow

1 All paragraphs that build on the underlying scenario will share this font style (indented slightly and italics).

2 We refer to the graphical elements of BPMN with Initial Capitals. Where an important BPMN concept is
referenced (that is not a graphical element), we have used italics within the sentence.

1 © BPM Focus, 2008 Based on Chapter 5 of the

 BPMN Modeling and Reference Guide

http://www.bpmnreferenceguide.com/

(the arrows). The first Activity is a Task and the second represents a Sub-Process.
Following a decision, represented by the diamond (called an Exclusive Gateway), the
Process then branches to either “Offer Mortgage” or “Send Rejection” (both
represented here as simple Tasks). Both branches lead to an End Event (thick
circle).

Start Events represent the places that a Process can start, End Events represent
different results, some of which might be desired and others not. As we shall see,
BPMN supports a variety of Start Events and End Events. An Exclusive Gateway
represents a binary decision—only one outgoing Sequence Flow can evaluate to true.
Again, there are various types of Gateways in BPMN – they represent points in the
process where you need to exercise control, either splitting or merging the Sequence
Flow. For the purposes of this model, the three Tasks represent simple “atomic”
steps, whereas the collapsed Sub-Process has a further level of detail.

Setting Timers
Now, let us assume that we want to represent the fact that our potential
customer contacted Mortgage Co to ask for a mortgage application form. For
the moment, we will not worry about precisely how they contacted the
company, but let us assume it was a “message” of some sort. Further, we
want to set a clock running to send them a reminder after seven days if
Mortgage Co does not receive their application form back (see Figure 2).

Figure 2—A Message Start Event and a Timer Intermediate Event are
introduced

The Process now begins with a Message Start Event representing the message
received by Mortgage Co, who then sends out the application form; a Timer
Intermediate Event is placed on the waiting task to interrupt it and send a reminder
before looping back again to wait for the application form again.

There are many types of Start Events in BPMN; here we have used a Message Start
Event to indicate how this Process begins. Intermediate Events placed on the
boundary of a Task, Activity or Sub-Process means that if the Event fires, then it
will interrupt the Activity and send the Process down its outgoing Sequence Flow.
The generic term “Activity” describes all Tasks and Sub-Processes. If the Activity
completes before the Intermediate Event fires, then the Process moves on normally
(following the normal flow of the Process). The loop is created explicitly with

BPMN Modeling and Reference Guide 2

Sequence Flow although, as we will discover later, there are alternatives (i.e., use a
Loop Task).

There is another way to model this scenario using a Sub-Process for the send out
application form and wait for the response Figure 3.

Figure 3—Using a Sub-Process to represent the application form and
reminders

The Timer Intermediate Event shown “in line” with the Sequence Flow triggers
immediately the Sub-Process begins (the Sub-Process is shown in its expanded
form). It waits for seven days before that thread of activity moves to the “Send
Reminder” Task before looping back to wait for another seven days. When an
Intermediate Event is used in line (as in this case), then it can have only one
incoming and one outgoing Sequence Flow. Therefore, merging the incoming
Sequence Flow before the Timer Intermediate Event requires an Exclusive Gateway.
When merging Sequence Flow, an Exclusive Gateway immediately passes through
any incoming Sequence Flow so in this case it serves to clean up the Sequence Flow
(but does not represent any sort of delay).

Of course, other flow objects (Activities or Gateways) can normally have multiple
incoming and outgoing Sequence Flow. While the Sub-Process could have included a
Parallel Gateway to create the split (see Figure 4), it is unnecessary as the Sequence
Flow does not require control. Figure 3 and Figure 4 describe exactly the same
behavior. A general rule is that Gateways are only required where Sequence Flow
requires control.

BPMN Modeling and Reference Guide 3

Figure 4—Using a Parallel Gateway is unnecessary

The Sub-Process finishes with a Terminate End Event. The Terminate End Event
causes the immediate cessation of the Process on its current level (and below) even
if there is still ongoing activity. Effectively, it kills off the reminder loop.

Exercise One
Try modeling this process; it will help ensure that the techniques discussed so far
sink in:

Every weekday morning, the database is backed up and then it is checked to see whether
the “Account Defaulter” table has new records. If no new records are found, then the
process should check the CRM system to see whether new returns have been filed. If new
returns exist, then register all defaulting accounts and customers. If the defaulting client
codes have not been previously advised, produce another table of defaulting accounts and
send to account management. All of this must be completed by 2:30 pm, if it is not, then an
alert should be sent to the supervisor. Once the new defaulting account report has been
completed, check the CRM system to see whether new returns have been filed. If new
returns have been filed, reconcile with the existing account defaulters table. This must be
completed by 4:00 pm otherwise a supervisor should be sent a message.

Looping
So far, the loop is expressed using explicit Sequence Flow coming back to an earlier
part of the Process. BPMN provides another mechanism to represent this sort of
behavior—the Loop Task (see Figure 5). A Loop Task has a small semi-circular
arrow that curls back upon itself.

Figure 5—A simple Loop Task

BPMN Modeling and Reference Guide 4

It is possible to set BPMN attributes to support sophisticated looping behavior.3
This is required to support the necessary complexity required by simulation and
process execution environments.

Now clearly, it does not make much sense to endlessly loop back to wait for
an application form that may never arrive. So after two such reminders,
Mortgage Co has decided to cancel the application and archive the details.

There is another way of setting the loop counter in Figure 6. Instead of using a
graphically modeled “Set Loop Counter” Task, the “Send Reminder” Task could set
an assignment at the level of the attributes. Although invisible, an annotation could
then highlight its existence.

It is worth noting that the explicit Sequence Flow loop cannot cycle back to the
Start Event. Indeed, Start Events cannot have incoming Sequence Flow. The loop
can only go back as far the first Task.

Figure 6—A loop counter is set and after two iterations, the details are
archived and the Process ends

Decisions Based On Events
Of course, if the customer never sends back their application form, then the
process will never get to the assessment phase. But what if the customer does
let Mortgage Co know that they do not wish to proceed with the mortgage? The
model in Figure 6 does not adequately represent this subtly different scenario.

3 Looping and other element attributes store information about the Process that is not shown graphically.

BPMN Modeling and Reference Guide 5

Now, after sending the application pack, Mortgage Co waits for one of three
different things to happen. Either they receive the application (it moves on to
the “Make Assessment” Task), or they are notified that the customer does not
wish to proceed (in which case “Archive Details”), or after 7 days a reminder is
sent (twice before sending a final advice and archiving the details).

While it is possible to model such a scenario using Activities, Intermediate Events,
Sequence Flow and Exclusive Gateways, the model would become very messy and
convoluted. As an additional exercise, it is worthwhile trying to model that problem
using just these objects. But there is another, simpler way of modeling this
situation. BPMN has an Event-Based Exclusive Gateway (see Figure 7) to handle
these sorts of scenarios.

Send Out
Application
Form Pack

Send
Reminder

Set Loop
Counter

Loop
Count =3?

Yes

No

Final
Notification

7 Days

Not
Interested

Application
Received

Request
Application

Make
Assessment

Archive
Details

Archive
Details

Figure 7—Using an Event-Based Exclusive Gateway

The Event-Based Exclusive Gateway (or informally, the Event Gateway) and its
following Intermediate Events are regarded as a whole (the dot-dashed line around
them is a BPMN Group used for emphasis only). To differentiate it from other
Gateways, the Event Gateway reuses the Multiple Intermediate Event marker in the
center of the diamond. Effectively, the Gateway waits for one of the subsequent
Intermediate Events to occur. Either a message is received (Message Intermediate
Event) indicating the customer is “Not Interested” or the “Application Received”
Message Intermediate Event occurs (and the Process can progress normally), or the
timer goes off on that Intermediate Event and the reminder loop is initiated. Another
Sub-Process could represent the reminder loop.

BPMN Modeling and Reference Guide 6

Notice that the “Archive Details” collapsed Sub-Process appears twice on the
diagram. This Sub-Process is designed as a reusable Sub-Process. It might appear
in other Processes outside the scope of this example. Effectively, it represents a
stand-alone Process referenced by this one. Of course, one could reorganize the
diagram to use only one Activity on this model.

Meeting SLAs
Now let us assume that Mortgage Co receives the application form back and
they have decided to institute a Service Level Agreement with their customers.
They are now promising to respond with an offer or rejection within 14 days
from the date of receipt of an application form. In support of this, the Process
should alert the manager after 10 days if it has not completed, and then every
day thereafter. Also, they need to archive the details if the decision was to
reject the application (before the end of the Process).

Thinking about the alert, the first temptation is probably to use a Sub-Process and
then attach a Timer Intermediate Event to its border to create the alert (similar to
Figure 2 on page 2). The problem with this approach is that it will interrupt the
work of the Sub-Process, and a loop back to the beginning would cause the work to
start again (not the desired behavior). The work should not stop just to raise an
alert to the manager. Figure 8 shows one approach to solving this problem.

Figure 8—One approach to the non-interrupt alert problem

A separate Process path (or thread) with a Timer Intermediate Event linked to the
Start Event of the Sub-Process is one approach to create a non-interrupting alert.
The timer kicks in after 10 days if the work of the other thread has not finished—if
that work is completed, then one or other of the Terminate End Events will kill off
the timer. Effectively, a race condition occurs between these two strands of the
process. Once the “Alert Manager” Task has occurred, it waits another day before
looping back.

BPMN Modeling and Reference Guide 7

Representing Roles in Processes
The “Alert Manger” Task in Figure 8 above seems to imply that the manager
receives a message. However, messages have a special importance in BPMN.
Message Flow can only move between separate participants in a business-to-
business situation. Each participant operates a separate Process represented by
Pools. Message Flow coordinates the Processes of each participant.

Essentially, a Process exists within a single Pool. Labeled boxes display the Pool;
they also have square corners as opposed to Tasks and Sub-Processes, which have
rounded corners. BPMN uses Pools when representing the interaction between an
organization and participants outside of its control. Within a company, a single Pool
covers its own internal operations—it is only when it interacts with external
participants that additional Pools are required.4

For example, in our Mortgage Co, the Credit Agency (and the Customer) would
have a separate Pool (assuming one was trying to represent the interactions
between the parties).

Figure 9—Representing the customer in a separate Pool

Message Flow cannot communicate between Tasks inside a single Pool—that is
what Sequence Flow and data flow (as we shall see below) does. Sequence Flow is
used to moves the Process from one Activity to another. In this example, (see Figure
9) the “Customer” Pool interacts with a fragment of the “Mortgage Co” Process using
messages.

4 Separate Pools might be used where an organization had several independent business units that were
collaborating. In such a situation, each business unit would not necessarily know the internal operations of
the others, yet would need to indentify the interfaces between them.

BPMN Modeling and Reference Guide 8

Mortgage Co does do not know the Customer’s internal Process. Hence, the
representation for the Customer is a “Black Box Pool.” Within the Mortgage Co Pool,
the Message Start Event receives an incoming message from the Customer, which
triggers the Sub-Process. A race condition then starts between the two threads of
the Sub-Process.

Two of the Tasks in the Sub-Process are Send types of Tasks, while the third is a
Receive Task. In BPMN 1.1, there is no standard graphical way to differentiate Send
and Receive Tasks. Their type is implied by the direction of the Message Flow and
stored attributes.

Exercise 2
Try this exercise.

The Customer Service Representative sends a Mortgage offer to the customer and waits for
a reply. If the customer calls or writes back declining the mortgage, the case details are
updated and the work is then archived prior to cancellation. If the customer sends back the
completed offer documents and attaches all prerequisite documents then the case is moved
to administration for completion. If all pre‐requisite documents are not provided a message
is generated to the customer requesting outstanding documents. If no answer is received
after 2 weeks, the case details are updated prior to archive and cancellation. 5

Modeling Data and Documents
Mortgage Co handles many documents. They come from lots of different
sources—the “Surveyors Report,” the “Credit Report,” the “Title Search” and
the “Application Form.” In the context of the Processes of the firm, the
documents move through various states as the employees carry out their
work. The documents are handled, scanned, sorted, annotated, versioned,
archived, etc. Images are linked to customer records, with employees
transposing some of their content into data fields for the company’s
information systems.

Clearly, there is a need to understand how these data and documents are
manipulated within a given process. For example, in Figure 10, the “Rejection
Letter” and “Assessment” Documents are represented by Data Objects. Data
Objects are the Artifacts of the Process. They do not move along with the Process
flow, but act as inputs and outputs of Tasks.

Data Objects exist outside of the Sequence Flow of the Process, but they are
available to all flow objects in a given Process instance. Data flow passes
information into or out of an Activity. Of course, the implementation mechanism
used in any given system is going be specific to the platform used to support the
process.

5 Example answers to these Exercises will be made available online at http://www.bpmnreferenceguide.com/

BPMN Modeling and Reference Guide 9

Figure 10—Representing documents in the Process

Figure 10 above demonstrates two different ways of showing data flow. The
“Assessment” Data Object is output from the “Make Assessment” Sub-Process using
an Association connector. The “Assessment” Data Object is also input to the
“Archive Details” Sub-Process. The arrowheads on the Association indicate the
direction of the data flow.

The “Rejection Letter” Data Object is attached to the Sequence Flow between “Send
Rejection” and “Archive Details.” This is really a sort of shorthand used when the
data flow is between two Activities follow each other.

Another subtle implication of the incoming data flow is that it tells the reader that
these Data Objects must be available in order for the Tasks to start. For example,
when the Sequence Flow arrives at the “Send Rejection” Task, it sets the state of
the Activity to ready. It is ready to begin, but it cannot start until all of its inputs
(the “Assessment” Data Object) are available. 6

Coordinating Parallel Threads of Activity
Coming back to the processes of Mortgage Co, we have so far avoided a core
component of their business—making assessments about mortgages and their
viability.

The “Make Assessment” Sub-Process is where the real work of the Process
happens. Contained within that Activity are a number of Sub-Processes that
need to occur in parallel; the credit check, property title search and property
survey.

The problem is that Mortgage Co also needs to keep its costs down and at the
same time respond as quickly as possible to customer requests. So they have

6 Actually, it is technically possible to set the underlying attributes of the Activity to allow it to start and have
updated Data Objects arrive while the Activity is in progress.

BPMN Modeling and Reference Guide 10

teams and service providers that need to do things in parallel and yet still
have the ability to communicate with the other teams should one identify a
problem that would invalidate the mortgage application. In the past, they have
tried using email for this, but have found it inefficient and prone to cases
slipping through the cracks.

While the detail of each of these Sub-Processes is not so important at this
point, the key issue to observe is that a bad result in either of these areas will
invalidate the mortgage (or at least imply that work in the other areas should
halt).

Of course, a good result in any one of these areas means that work can start
immediately on preparing the Mortgage offer documents, but that work needs
to halt should a negative result come back from one of the other areas. In this
way Mortgage Co can enable, as much efficiency as possible, and at the same
time reduce the cycle time of the process.

There is another way of handling communication in BPMN. Instead of a directed
message (that has to go to a particular external participant), or Sequence Flow (that
cannot cross a Pool or Sub-Process boundary); Signals offer a general inter-process
communication capability. They can operate within a Process or between Pools and
they can cross Process boundaries—think of them like a signal flare or fire siren.
They are not directed to a specific recipient, instead all who are interested can
look/listen and detect the signal and then act appropriately.

The Signal Intermediate Events have two distinct modes of operation. They either
send signals or listen for them. In Figure 11 below, the Signal Intermediate Events
are all set to listen (they are all in the bottom Sub-Process “Prepare Offer Letter”).
That is, they catch the Signal broadcast by the Signal End Events. All the Signal
End Events send signals—that is they throw the signal.

Where Intermediate Events catch the trigger shown in the center is white (as in a
Start Event); where they throw, the center is solid (like an End Event). Of course, a
Signal Intermediate Event can also throw (in which case it would have two
concentric thin lines with a solid triangle in the center). Indeed, all trigger Events
(Start, Intermediate, and End), either throw or catch. This is inherent to what
Events really are.

All Start Events catch—that is, that they can only receive incoming triggers. It does
not make sense for a Start Event to “send,” it responds to an Event that happens.
Somehow, it is detected and that is what triggers the Event. The markers for all
Start Events are white-filled.

All End Events throw—they can only fire triggers for other Events to catch. End
Events cannot detect things that happen (what would they do with them, they are
at the end?). Instead, they can create Events to which others respond. The markers
for End Events are black-filled.

Depending on the sort of Intermediate Event and its contextual usage, the Event
either throws or catches (or both) the trigger. Some Intermediate Events always
come in pairs; others operate independently. The catch Intermediate Event markers
are white-filled and the throw Intermediate Event markers are black-filled.

BPMN Modeling and Reference Guide 11

Make Assessment

Credit Check

Property Title Check

Surveyor Report

Undertake
Property
Survey

Undertake
Property Title

Check

Undertake
Customer

Credit Check

Prepare Offer Letter

Offer Ready

Bad Title

Bad Credit

Bad Credit

Bad Survey

Bad Title

Bad Credit

Bad Survey

Title OK

Credit OK

Survey OK

Bad Survey

Bad Title

Bad Survey Bad Title Bad Credit

Make
Mortgage

Offer

Criteria Not Met

Credit OK

Title OK

Survey OK

Prepare Offer
Documents

Figure 11—Using Signal Intermediate Events to communicate

In Figure 11 above, catch Signal Intermediate Events in the bottom Sub-Process are
set to capture the signals broadcast by the End Events of the first three Sub-
Processes (the “Credit OK,” “Title OK” or “Survey OK” results). If a “Bad Survey,”
“Bad Credit” or “Bad Title” End Event occurs, it will trigger one of the Intermediate
Events attached to each of the boundaries of the other Sub-Processes, thereby
interrupting all of the work going on there.

The “Prepare Offer Letter” Sub-Process starts along with the other three Sub-
Processes, but then waits for any one of these signals to occur. As soon as one of

BPMN Modeling and Reference Guide 12

them happens (detected by the Signal Intermediate Event), it moves the Process on
to the Complex Gateway (diamond with a bold asterisk at its center). This Complex
Gateway is used to merge the Sequence Flow from these three Intermediate Events.

A Complex Gateway enables the modeler to capture behavior that does not exist in
the other Gateways. Think of it as a warning that here the system is likely to drop
into complex rules or code. In this case, the “Prepare Offer Documents” Sub-
Process can start upon detection of any of the three signals. But as other signals
are detected, a new instance of the Sub-process is not required. A normal Exclusive
Gateway would result in duplicate process instances as each new Event happened.

If a “Bad Survey,” “Bad Title” or “Bad Credit” Signal Intermediate Event fires, then
the “Prepare Offer Letter” Sub-Process is also interrupted leading it to fire a
“Criteria Not Met” Signal End Event. Assuming none of those things happen, the
entire “Make Assessment” Sub-Process will complete normally with a “Make
Mortgage Offer” Signal End Event.

The “Make Assessment” Sub-Process (expanded in Figure 11 above, but collapsed
again in Figure 12), will send one of the two possible signals back to the parent
Process: “Make Mortgage Offer” or “Criteria Not Met.”

Figure 12—A revised “Make Assessment & Offer/Reject” Sub-Process

The decision (using an Event-Base Gateway) to offer the mortgage now operates in
parallel to the “Make Assessment” Sub-Process. It is waiting for either the “Make
Mortgage Offer” or the “Criteria Not Met” signal (thrown by the Sub-Process). If the
Event-Based Gateway was inline, after the “Make Assessment” Sub-Process, then
the signals in the Sub-Process would fire before the parent was ready for them (in
which case they are ignored). Notice also that the “Make Assessment” Sub-Process
goes to a None End Event—those threads will finish without affecting either of the

BPMN Modeling and Reference Guide 13

two branches from the “Offer?” Event-Based Gateway.7 The same behavior exists in
the first 3 Sub-Processes in “Make Assessment” as shown in Figure 11.

The key point to understand is that signals can communicate between different
levels of the Process (between Sub-Processes and the parent Process). Equally,
signals could communicate from a parent Process to its Sub-Processes, or to other
Processes. Signals provide a general form of inter-process coordination within
BPMN. Without the use of a signal, coordination would rely on Process data (and an
Exclusive Gateway). In the end, it is a matter of personal choice—i.e. a modeling
decision.

Exercise 3
Another brainteaser:

In November of each year, the Coordination Unit at the Town Planning Authority drafts a
schedule of meetings for the next calendar year and adds draft dates to all calendars. The
Support Officer then checks the dates and suggests modifications. The Coordination Unit
then rechecks all dates and looks for potential conflicts. The final schedule of meeting dates
is sent to all the independent Committee Members by email, who then check their diaries
and advise the Coordination Unit of any conflicts. Once the dates are finalized (by the
Coordination Unit), the Support Officer updates all group calendars and creates meeting
folders for each meeting and ensures all appropriate documents are uploaded to system.
Committee Members are advised a week before each meeting to read all related
documents. The Committee Members hold their meeting, and the Support Office then
produces minutes including any Action Points for each Committee Member. Within 5
working days, the Coordination Unit must conduct a QA check on the minutes, which are
then sent to all Committee Members. The Support Officer then updates all departmental
records.

Another Approach to Escalation
Returning to the non-interrupting alert needed (for the manager as discussed
for the model in Figure 8), it is unlikely that the Manager works for an external
business entity, so the Task is not a Send Task.

Figure 12 above also uses a Signal Intermediate Event to initiate (throw) the
interaction with the Manager role. In Figure 13, a corresponding Signal
Intermediate Event exists in the Manager Lane to listen for such an escalation—i.e.,
it is waiting to catch. In this case, the Signal Intermediate Event supports
communication at the same level within a single Pool but across two Lanes.

Figure 13 provides yet another alternative approach to the non-interrupt alert
problem. It also provides an overview of the Process developed so far.

7 Technically, the signals fire at the end of the sub-process which is also the same time that the Event
Gateway fires, so the signal would probably be detected. This model is drawn in parallel to ensure the
required behavior occurs.

BPMN Modeling and Reference Guide 14

BPMN Modeling and Reference Guide 15

Figure 13—The complete Process employing two Lanes to represent the
customer service representative and the manager, making use of Signal
Events and to coordinate the offer decision with the Sub-Processes of Figure
11

M
ake A

ssessm
ent &

 O
ffer/R

eject

O
ffer

M
ortgage

S
end

R
ejectio

n

O
ffer?N

o

Y
es

S
end O

ut
A

pplication
F

orm
 P

ack

A
lert

M
anager

A
rchive

D
eta

ils

M
ake

A
ssessm

ent

A
rchive

D
etails

7
 D

ays

N
ot

Interested

A
pp

lica
tion

R
e

ceived

10 D
ays

1 D
a

y

S
end

R
em

inder

M
ake

M
ortgag e
O

ffer

C
riteria N

ot M
et

A
lert

M
anager

E
xpedite

A
ssessm

ent

More Than One Right Answer
Just like decisions taken by the modeler (what detail to include and how to present
it), decisions taken within a Process do not always have just one correct answer.

Consider Mortgage Co as it compiles the offer documents for its customers.
Depending on the mortgage applied for, different documents are required. So a
generic mortgage application Process needs mechanisms to differentiate which
sub-set of documents to include—let us assume a main proposal plus any
number of supplements.

The precise detail of each rule is not our concern here, but providing a Process
backdrop for those decisions is not easy if the modeler is restricted to Exclusive
Gateways. Process models would become inordinately complex and difficult to
follow.

BPMN provides a couple of mechanisms to handle this sort of challenge. The
Inclusive Gateway allows for decisions, where all outgoing Sequence Flow conditions
that evaluate to true are activated. This is in stark contrast to the Exclusive
Gateway where only the first condition that evaluates to true activates (all others are
ignored).

Figure 14—Dealing with decisions that have more than one right answer

The splitting Inclusive Gateway has a circle at its center to indicate that each
outgoing Sequence Flow is evaluated. If it returns a true value, then the Sequence
Flow is activated.

The other approach is to use Conditional Sequence Flow (see Figure 15). Each
Conditional Sequence Flow has a mini-diamond at the point it leaves and Activity.
Each is evaluated in turn and if it returns a true value then the Sequence Flow is
activated.

BPMN Modeling and Reference Guide 16

Ensure Offer
Details

Available

Main Contract

Supplement
A

Supplement B

Include A?

Include B?

Figure 15—Using Conditional Sequence Flow

Notice that Figure 14 and Figure 15 both use a merging Inclusive Gateway to
ensure that the correct number of Sequence Flow are joined together again. While
there is no requirement that the outgoing flows of an Inclusive Gateway merge (they
could each follow independent paths and never come back together), if the intention
is to rejoin these threads together, then a merging Inclusive Gateway is needed. On
the other hand, a Parallel Gateway would expect all incoming Sequence Flow to fire
(and if they did not, the Process would halt at that point, waiting for a Sequence
Flow that never arrives). If an Exclusive Gateway were used, it would not merge the
paths together at all; instead each thread would pass straight through.

Exercise 4

After the Expense Report is received, a new account must be created if the employee does
not already have one. The report is then reviewed for automatic approval. Amounts under
$200 are automatically approved, whereas amounts equal to or over $200 require approval
of the supervisor.

In case of rejection, the employee must receive a rejection notice by email. The
reimbursement goes to the employee’s direct deposit bank account. If the request is not
completed in 7 days, then the employee must receive an “approval in progress” email

If the request is not finished within 30 days, then the process is stopped and the employee
receives an email cancellation notice and must re‐submit the expense report.

Exercise 5

After the Process starts, a Task is performed to locate and distribute any relevant existing
designs, both electrical and physical. Next, the design of the electrical and physical systems
starts in parallel. Any existing or previous Electrical and Physical Designs are inputs to both
Activities. Development of either design is interrupted by a successful update of the other
design. If interrupted, then all current work is stopped and that design must restart.

In each department (Electrical Design and Physical Design), any existing designs are
reviewed, resulting in an Update Plan for their respective designs (i.e. one in Electrical and
another in Physical). Using the Update Plan and the existing Draft of the Electrical/Physical
Design, a revised design is created. Once completed the revised design is tested. If the
design fails the test, then it is sent back to the first Activity (in the department) to review
and create a new Update Plan. If the design passes the test, then it tells the other
department that they need to restart their work.

BPMN Modeling and Reference Guide 17

BPMN Modeling and Reference Guide 18

When both of the designs have been revised, they are combined and tested. If the combined
design fails the test, then they are both sent back to the beginning to initiate another design
cycle. If the designs pass the test, then they are deemed complete and are then sent to the
manufacturing Process [a separate Process].

	An Introduction to BPMN
	Building out a Process with BPMN
	Setting Timers
	Exercise One

	Looping
	Decisions Based On Events
	Meeting SLAs
	Representing Roles in Processes
	Exercise 2

	Modeling Data and Documents
	Coordinating Parallel Threads of Activity
	Exercise 3

	Another Approach to Escalation
	More Than One Right Answer
	Exercise 4
	Exercise 5

